Protective effect of aqueous extract of *Aegle marmelos* against formaldehyde induced arthritis in rats

Desai Nilesh V*, Patkar Atul A, Shinde Shilpa S, Arwade Aboli S.

Rajashri shahu chhatrapati institute of pharmacy,

Kolhapur-416002, Maharashtra, India

(Received: 18 August, 2012; Accepted: 24 August, 2012; Published: 29 August, 2012)

*Corresponding Author: Email: desainilesh22@gmail.com

ABSTRACT

The present study was aimed to assess the anti arthritic nature of aqueous extract of *Aegle marmelos* leaves (AEAM) against formaldehyde induced arthritis in rats. The degree of inflammation was evaluated by hind paw swelling and increase in paw diameter. AEAM showed significant changes in paw swelling, paw diameter and percent inhibition of paw volume. The results of the current investigation concluded AEAM possess a significant anti arthritic activity against formaldehyde induced arthritis model and justifying its therapeutic role in arthritic condition. The observed anti arthritic activity may be due to the presence of phytoconstituents such as alkaloid, saponins and flavonoids.

Keywords- Arthritis, *Aegle marmelos*, formaldehyde, inflammation.

INTRODUCTION

Rheumatoid arthritis (RA), one of the commonest autoimmune diseases, is a chronic, progressive, systemic inflammatory disorder affecting the synovial joints and typically producing symmetrical arthritis that leads to joint destruction, which is responsible for the deformity and disability. The consequent morbidity and mortality has a substantial socio-economic impact. Epidemiology of the arthritis in female: male is 3:1 and the prevalence is 1% of the world population. In human as well as in animal models, RA is characterized by a series of pathological processes of the joints, such as leukocyte infiltration, a chronic inflammation, pannus formation, and extensive destruction of the articular cartilage and bone. Although the exact cause of RA has not been elucidated in detail, pro-and anti-inflammatory cytokines seem to play an important role in the etiology of the disease. In particular, it was reported that the inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 play key roles in the inflammation and joint damages during the development of RA.

Aegle marmelos (Linn) correa, commonly known as bael (or bel), belonging to the family Rutaceae, is a moderatesized, slender and aromatic tree. A number of chemical constituents and various therapeutic effects of leaves of *Aegle marmelos* have been reported by different workers. Broadly, *Aegle marmelos* leaves contain tannins, skimmianin, essential oil (mainly caryophyllene, cineole, citral, citronellal, d-limonene and eugenol), sterols and triterpenoids, including lupeol, sitosterol, and amyrin, flavonoids (mainly Rutin, flavones), coumarins (including aegeline, marmesin and umbelliferone) and other miscellaneous compounds whereas potential pharmacological activity of the leaves are hypoglycemic, anti-inflammatory, antimicrobial, anticancer, radioprotective, chemopreventive and anti-oxidative activity.

The plant has been used in the Indian traditional medicines from time immemorial. It is associated with various important medicinal properties. The Bael leaves are bitter and used as a remedy for ophthalmia, ulcers, inflammations, dropsy, cholera and beriberi. A decoction of plant leaves and fruit is used in upper respiratory tract infections and heart ailments. Earlier findings suggest that presence of phytochemicals such as alkaloids, flavonoids, steroids are responsible for anti-arthritic activity. So the present study was carried out to evaluate effect of aqueous extract of *Aegle*
marmelos leaves on formaldehyde induced arthritis in male wistar rats.

MATERIALS AND METHODS

Chemicals and Drugs: Diclofenac Sodium injection (Diclolab, BDH industries, mumbai), Formaldehyde (Poona chemical Ltd, Pune).

Instruments Used: Plethysmometer (UGO Basile, Italy), Verneir caliper (Malik tools, Mumbai), Oral feeding needle (BIK Industries, Mumbai).

Animals: Male Wistar rats (150-250 g) or female Swiss albino mice (20-25 gm) obtained from the Yash Farm and National Toxicological Centre, Pune, were used for study.

Housing conditions: Animals were maintained at a temperature of 25±1°C and relative humidity of 45 to 55 % under 12 hr light and 12 hr dark cycle. The animals had free access to standard food pellets, procured from Pranav Agro Industries Ltd., Sangli, India and water ad libitum.

Collection and Authentication of Plant Material: The leaves of Aegle marmelos was collected from Bhor region of Maharashtra in the month of September-October 2011 and authenticated by Botanical Survey of India, Pune and herbarium voucher specimen No: BSI/WRC/Tech/2012/NVDAEM5.

Preparation of Aqueous Extract of Aegle marmelos (AEAM) leaves: Leaves of Aegle marmelos were shade dried and coarsely powdered by using grinder mixer. The powdered material was macerated in sufficient quantity of distilled water with small quantity of chloroform to prevent fungal growth and kept for 3 days. During maceration it was shaken twice daily. On third day it was filtered and dried at 60 °C on water bath. The extract was then preserved in the desicator and then used for phytochemical and pharmacological studies.

Phytochemical screening of the extract: AEAM was subjected to qualitative analysis for the various phytoconstituents like alkaloids, carbohydrates, glycosides, phytosterols, saponins, tannins, proteins, amino acids and flavonoids.

Acute oral toxicity study (AOT): Healthy adult swiss mice (20-30 gm) were subjected to acute oral toxicity studies as per Organization for Economic Co-operation and Development (OECD) guidelines (AOT-423). Animals were observed individually after dosing at least once during the first 30 min, periodically during the first 24 h, with special attention given during the first 4 h, and daily thereafter, for a total of 14 days. The changes in skin, fur, eyes, mucous membranes, respiratory, circulatory, autonomic, central nervous system, somatomotor activity and behaviour pattern were noted.

Formaldehyde induced arthritis in rats: Animals were randomly divided into five groups of six animal each (n=6). Rats were injected with 0.1 ml 2% (v/v) of formaldehyde solution in the planter surface of the left foot, on the first and third day of the test. Drug treatment was started from the initial day i.e. from the day of formaldehyde injection (0day) and continued till 10th day. The rat paw volume and paw diameter was recorded daily by using following Plethysmometer and verneir caliper respectively.

Table 1: Treatment Schedule in formaldehyde induced arthritis model

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Treatment</th>
<th>Dose</th>
<th>Route of Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal</td>
<td>Distilled water 5 ml/kg</td>
<td>Per Oral.</td>
</tr>
<tr>
<td>II</td>
<td>Control</td>
<td>Formaldehyde (2%) 0.1ml</td>
<td>Sub Planter.</td>
</tr>
<tr>
<td>III</td>
<td>Diclofenac</td>
<td>Diclofenac 10 mg/kg</td>
<td>Intraperitoneally.</td>
</tr>
<tr>
<td>IV</td>
<td>AEAM I</td>
<td>Formaldehyde (2%) 0.1ml</td>
<td>Sub Planter.</td>
</tr>
<tr>
<td></td>
<td>AEAM 200 mg/kg</td>
<td></td>
<td>Per Oral.</td>
</tr>
<tr>
<td>V</td>
<td>AEAM II</td>
<td>AEAM 400 mg/kg</td>
<td>Per Oral.</td>
</tr>
<tr>
<td></td>
<td>Formaldehyde (2%) 0.1ml</td>
<td></td>
<td>Sub Planter.</td>
</tr>
</tbody>
</table>

Statistical Analysis: The values were expressed as mean ± SEM (n=6). The statistical significance was assessed using student t-test or one-way analysis of variance (ANOVA) followed by Dunnet’s test and *P<0.05 and **P<0.01 were considered to be statistically significant.
RESULT

Physical properties of AEAM:
- Colour: Blackish Brown
- Odour: Characteristic
- Taste: Bitter
- Appearance: Sticky
- % Yield: 10.23 %

Phytochemical screening of the extract:
Phytochemical study of AEAM showed the presence of various phytoconstituents like alkaloids, carbohydrates, glycosides, saponins, tannins, and flavonoids.

Acute oral toxicity (AOT) of AEAM: According to OECD guidelines for acute oral toxicity at the dose of 2000mg/kg, animals in the group treated with AEAM did not show any symptoms of toxicity at this dose level and no mortality was observed during the 14 days of observational period. Hence, according to the guideline, the different doses of AEAM selected for per oral administration were 200 mg/kg (Middle dose) and 400 mg/kg (Upper dose).

Effect of AEAM on Formaldehyde induced arthritis paw volume (ml): Sub planter injection of Formaldehyde (0.1ml) on 1st and 3rd day to the rat hind paw lead to development of arthritis which reached a peak edema on 6th day of injection. Diclofenac (10mg/kg) treated group showed significant decreased in paw edema on 3rd (P<0.05), 6th (P<0.01) and 10th (P<0.01) day. AEAM (200mg/kg) and AEAM (400mg/kg) showed significant decreased in paw edema on 6th and 10th day with P<0.01.

Table 2: Effect of AEAM on Formaldehyde induced arthritis paw volume (ml)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Paw Volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0</td>
</tr>
<tr>
<td>Normal</td>
<td>0.82 ± 0.09</td>
</tr>
<tr>
<td>Control</td>
<td>0.94 ± 0.05</td>
</tr>
<tr>
<td>Diclofenac (10mg/kg)</td>
<td>0.92 ± 0.06</td>
</tr>
<tr>
<td>AEAM (200mg/kg)</td>
<td>0.92 ± 0.08</td>
</tr>
<tr>
<td>AEAM (400mg/kg)</td>
<td>0.97 ± 0.07</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM (n=6). *P<0.05, **P<0.01. as compared with control (One-way ANOVA followed by Dunnet’s test). ## indicates significant induction when compared with normal group.

Figure 1: Effect of AEAM on Formaldehyde induced arthritis paw volume (ml).
Effect of AEAM on Formaldehyde induced arthritis Paw diameter (mm): Sub planter injection of Formaldehyde (0.1ml) on 1st and 3rd day to the rat hind paw led to increase in paw diameter which reached peak at 6th day of injection.

Diclofenac (10mg/kg) treated group showed significant decreased in paw edema on 6th and 10th day with P<0.01. AEAM (200mg/kg) and AEAM (400mg/kg) showed significant decreased in paw edema on 6th and 10th day with P<0.01.

Table 3: Effect of AEAM on % Inhibition of Paw Volume.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Day 0</th>
<th>Day 3</th>
<th>Day 6</th>
<th>Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diclofenac (10mg/kg)</td>
<td>-</td>
<td>61.72%</td>
<td>69.23%</td>
<td>86.73%</td>
</tr>
<tr>
<td>AEAM (200mg/kg)</td>
<td>-</td>
<td>32.09%</td>
<td>47.86%</td>
<td>57.14%</td>
</tr>
<tr>
<td>AEAM (400mg/kg)</td>
<td>-</td>
<td>40.74%</td>
<td>55.55%</td>
<td>69.38%</td>
</tr>
</tbody>
</table>

Effect of AEAM on Percent inhibition of paw volume: Animals treated with AEAM 200mg/kg showed % inhibition of paw volume on the day 3 (32.09%), day 6 (47.86%) and day 10 (57.14%) whereas animals treated with AEAM 400mg/kg showed % protection of paw volume on the day 3 (40.74%), day 6 (55.55%) and day 10 (69.38%). Diclofenac treated group showed % protection of paw volume on the day 3 (61.72%), Day 6 (69.23%) and day 10 (86.73%).

Table 4: Effect of AEAM on Formaldehyde induced arthritis Paw diameter (mm)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Day 0</th>
<th>Day 3</th>
<th>Day 6</th>
<th>Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>7.35 ± 0.08</td>
<td>7.37± 0.10</td>
<td>7.38 ± 0.04</td>
<td>7.38 ± 0.07</td>
</tr>
<tr>
<td>Control</td>
<td>7.55 ± 0.36</td>
<td>16.50 ± 0.76**</td>
<td>19.67 ± 1.02**</td>
<td>17.50 ± 1.38**</td>
</tr>
<tr>
<td>Diclofenac (10mg/kg)</td>
<td>9.00 ± 0.44</td>
<td>12.66 ± 1.05</td>
<td>12.50±1.05**</td>
<td>10.17±0.70**</td>
</tr>
<tr>
<td>AEAM (200mg/kg)</td>
<td>8.00 ± 0.25</td>
<td>13.67 ± 1.35</td>
<td>15.00 ± 1.06*</td>
<td>12.00 ± 0.93**</td>
</tr>
<tr>
<td>AEAM (400mg/kg)</td>
<td>8.33 ± 0.21</td>
<td>13.00 ± 1.21</td>
<td>14.67±1.43**</td>
<td>11.67±0.88**</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM (n=6). *P<0.05, **P<0.01. as compared with control (One-way ANOVA followed by Dunnet’s test). ## indicates significant induction when compared with normal group.
DISCUSSION:
RA is a chronic inflammatory disease affecting about 1% of the population in developed countries. The acute stage of arthritis is characterized by signs of hyperalgesia, lack of mobility and a pause in body weight gain; during the acute period, the hind and fore paw joint diameters increase. In chronic stages of the disease rats with arthritis are often relatively immobile due to the severity of paw swelling. Even though various categories like immunosuppressants, NSAIDs, steroid anti-inflammatory drugs are being used till now, but the potential side effects give a limitation for their use. Traditional medicines derived mainly from plants play major role in the management of arthritis as they are effective, non-toxic, with less or no side effects and are considered to be excellent candidates for arthritic therapy. Hence, there is a need to explore for more naturally available alternatives, so that their therapeutic values can be assessed and expanded.

Formaldehyde induced arthritis is one of the most commonly used acute model for assessing anti-arthritic potential of plant extract. The development of edema in the paw of the rat after injection of formaldehyde (0.1ml,2% w/v) is due to the release of histamine, serotonin and the prostaglandin like substances at the site of injection. Both histamine and prostaglandin are the key mediators in inflammatory hyperalgesia that is mediated through the activation of local pain receptors and nerve terminals producing hypersensitivity in the area of injury. Inhibition of paw edema and paw diameter observed in formaldehyde models may be due to the ability of the AEAM to inhibit histamine, serotonin and the prostaglandin which are responsible for inflammation.

CONCLUSION
Our photochemical investigation revealed that the presence of alkaloids, carbohydrates, glycosides, saponins, tannins, and flavonoids in AEAM. Presence of wide range of constituents indicates the good efficacy of this plant in various pathological disorders. Saponins, steroids, alkaloids are known to inhibit articular swelling, decrease arthritic index and regulate down the content of IL-IB and TNF-α in the inflammatory tissues of arthritic rats. Beside these flavonoids has been reported to inhibit the cyclooxygenase enzyme thereby inhibiting prostaglandin synthesis which are responsible for development of arthritis. Pharmacological studies indicate that flavonoids and saponin have anti-inflammatory and antiarthritic activity.

Thus, in the light of above facts, it can be demonstrated that the AEAM may serve as an effective anti-arthritic drug and the effect might be speculated due to phytochemicals such as saponins and flavonoids. This study warrants the investigation to isolate and identify the active principles and to investigate the exact mechanism of action of AEAM against arthritis.

REFERENCES
1. Narendhirakannan R, Subramanian S, Kandaswamy M. Anti-inflammatory and lysosomal stability actions of Cleome gynandra L. studied in adjuvant induced arthritic rats, Food and Chemical Toxicology, 2007; 45(2): 1001-1012.
2. Yeom M, Lee H, Kim GH. Anti-arthritic Effects of Ephedra sinica STAPF Herb-

of Pharmacy and Pharmacology, 2009; 3(12): 611-614.
